******************************************************************************************************************************************
Bu Sitedeki Tüm Yazılar Ücretsizdir. Sadece Sizden İstediğimiz "Allah Bu Siteyi Hazırlayandan Razı Olsun" Amin... Demenizdir.
************************************************************************************************************************************ www.odeveson.blogspot.com adresindeki yazı ve makalelerin Kaynak göstermeksizin Tamamı veya Bir Kısmının KOPYALANMASI YASAKTIR.

Birinci Dereceden Bilinmeyenli Denklemler

7 Mayıs 2011 Cumartesi Gönderen admin

SORULAR

1) 1985 FL-1: a>801:3+6 eşitsizliğini sağlayan en küçük “a” doğal sayısı kaçtır?
A)90 B)
91 C)273 D)274

ÇÖZÜM:a>801:3+6 a>267+6 a>273 274>273
CEVAP:D

2) 1991 EML: x bir gerçek (reel) sayı olmak üzere ; 3x + x > x – 1
ise, aşağıdakilerden hangisi doğrudur? 5 3
A) x < 15 B) x >
15 C) x < 15 D)x > 15

ÇÖZÜM : 9x + 5x > 15x –15 9x –15x +5x > -15 -1 x > -15 x < 15
CEVAP:A

3) 1992 DPY: Aşağıdaki sayı doğrularının hangisinde -5 x +1 < 11
eşitsizliğinin çözüm kümesi doğru olarak gösterilmiştir?
A) ___________________
B) ___________________
C) ___________________
D) ___________________

ÇÖZÜM: -5 x < 11 – 1 -5 x < 10 -5 x < 10 x > -2
-5 -5
CEVAP:D

4) 1993 DPY: -5x +6 > -3x +4 eşitsizliğini sağlayan doğal sayıların kümesi aşağıdakilerden hangisidir?
A) {0} B) {1} C) {0,1} D) {1,2}

ÇÖZÜM:-5x +3x > -6 +4 -2x > -2 x < +1 0,1 < 1
-2 -2
CEVAP:C
5) 1989 EML: 2x +2 <0 ve x >-2 ise x’ in alacağı en büyük değer
kaçtır?
A) –2 B) –1 C) 0 D) 1

ÇÖZÜM: 2x < -2 x < -1 x > -2 -1 < -1 -1 > -2
CEVAP:B

6) 1997 DPY: 2x –8 > -x +4 eşitsizliğini sağlayan x ‘in bütün d değerleri için , aşağıdakilerden hangisi doğrudur?
A) x > 4 B) x <
4 C) x > 5 D) x < 2

ÇÖZÜM: 2x +x > +4 +8 3x > 12 x > 4
CEVAP:A

7) 1999 KLJ: Aşağıdakilerin hangisinde , 3x –2 < 7 ve 4 -2x <2 e eşitsizliklerini birlikte sağlayan reel sayıların kümesi
gösterilmiştir?
A) ____________________
B) ____________________
C) ____________________
D) ____________________

ÇÖZÜM: 3x < 7+2 3x < 9 x < 3

-2x < 2-4 -2x < -2 x > 1
CEVAP:A

8) 1999 DPY: -3x +7 > -14 eşitsizliğinin tam sayılar kümesindeki
çözüm kümesi hangisidir?
A) { 7,8,9, .....} B) {....., 5,6,7 }
C) { .....,-9,-8,-7 } D) { -7,-8,-9, .....}

ÇÖZÜM: -3x > -14 –7 -3x > -21 x < +7 {.....,5,6,7 } < +7

CEVAP:B
9) 1999 ML: 3x –9 > 6x -3 eşitsizliğinin çözüm kümesi , aşağıdaki
sayı doğrularının hangisinde koyu ve kalın çizgiyle gösterilmiştir?
A) _________________
B) _________________
C) _________________
D) _________________

ÇÖZÜM: 3x –6x > -3+9 -3x > +6 x < -2
CEVAP:B

10) 1994 DPY: 2x +2 > 4 eşitsizliğini sağlayan noktalar kümesi,
aşağıdaki taralı bölgelerden hangisidir?
A)
B)
C)
D)

ÇÖZÜM: 2x > 4-2 2x > 2 x > 1
CEVAP:A

11) 1991 FL: 0 < x < 1 ise ( x+3) in en büyük değeri kaçtır?

A) 1 B)
2 C) 3 D) 4

ÇÖZÜM:En büyük x değeri istendiğine göre x ‘e 1 değerini
veririz.O zaman; (1+3) = 4

CEVAP:D
12) 1994 FL: x y olmak üzere , x ve y doğal sayılardır. x < 9 ve
y < 10 ise; x + y ‘ nin alabileceği en büyük değer kaçtır?
x - y
A) 13 B)
14 C) 15 D) 16

ÇÖZÜM: En büyük istenildiğine göre x ‘e 8 veririz. x-y olacağına
göre x, y ‘den daha büyük olmalıdır. O zaman y, 7 olur.
8 + 7 = 15 = 15
8 - 7 1 CEVAP:C

13) 1984 FL-2: x - 3 < 0 ve x + 2 > 0 eşitsizliklerini birlikte
sağlayan x ‘ in değerleri aşağıdakilerden hangisidir?
A) –2 < x < 3 B) –2 < x < 3
C) –2 < x < 3 D) –2 < x < 3

ÇÖZÜM: x < 3 ve x > -2 (-2 < x) ; ise –2 x < x < 3
CEVAP:A

14) 1999 DPY:Aşağıdaki sayı doğrularının hangisinde,-3x+6 < 12
eşitsizliğinin çözüm kümesi koyu ve kalın çizgi ile gösterilmiştir
A) _____________ B) _______________
C) _____________ D) _______________

ÇÖZÜM: -3x < 12-6 -3x < 6 x > -2
-3 -3 CEVAP:C

15) 1993 FL: 0 < x < y < z ise aşağıdakilerden hangisi pozitiftir?
A) x – z B) y – z C) y – x D) z - x
y - x z - y y - z y – x

ÇÖZÜM: x ‘e 1 , y ‘e 2 , z ‘e 3 veririz. O zaman ; 3-1 = 2 = 2
2-1 1
CEVAP:D

1. x + 6 = 10 denkleminin çözüm kümesini
bulalım:

Çözüm:
x + 6 = 10 denkleminde (+6) nın toplama
işlemine göre ters elemanı olan (-6), eşitliğin her iki yanına eklenirse eşitlik bozulmaz.

Buna göre; x + 6 = 10
x + 6 + (-6) = 10 + (-6)
x + 0 = 4
x = 4 olur.
Ç = {4} olur.

Verilen bir denklemin çözümünün doğru yapılıp yapılmadığının araştırılmasına, denklemin sağlaması denir.

Bulunan kök, denklemde yerine yazılarak denklemin sağlaması yapılır böylece bulunan kökün doğruluğu kontrol edilir.

4 sayısının x + 6 = 10 denklemini sağlayıp sağlamadığını kontrol edelim:

x = 4 için x + 6 = 10
4 + 6 =10
10 = 10 olduğundan
çözüm doğrudur.
x + 6 = 10
x = 10 – 6
x = 4 ve Ç = {4} tür.

Kaynak: İlginizi Çekecek Güzel Haberler Oyunlar ve fazlası
Googleda AraGoogle da bu haberi ara

ECBanner bloggping TurkeyRank.Com - Pagerank Servisi pagerankonline.de - Pagerank Anzeige ohne Toolbar On our way to 1,000,000 rss feeds - millionrss.com
Seo Memurvadisi Backlink Austausch ECBannerFree Automatic Backlinks Free Automatic Backlinks Free Automatic BacklinksFree Automatic Backlinks Free Automatic BacklinksFree Automatic Backlinks
Bu sitedeki yazılar telif hakkları göz önüne alınarak yayınlanmaktadır. Kaynak göstermeksizin Tamamı veya Bir Kısmının KOPYALANMASI YASAKTIR. yayınlanan bu makale ve eserlerin hak sahipleri herhangibir nedenle telif hakkı idda ederlerse ve bizce uygun görülmesi halinde (gerçeklik esası olması dahilinde) bize lütfen mail atsınlar (ozkan@mail.nu) en kısa sürede eserleriniz sitemizden kaldırlır. © 2008 www.odeveson.blogspot.com